Why Does E=mc2?

By: Brian Cox,Jeff Forshaw

Why Does E=mc2?

  • Format: Paperback
  • Publisher: The Perseus Books Group
  • ISBN: 9780306819117
More product information
Back to top

Sorry, there are currently no sellers for this product.

seller-pdp-logo

We've carefully chosen all our Tesco Partners, to give you even more choice when you shop with us online.

  • Browse a wider range of specialist products, all in one place
  • Collect Clubcard points on every order
  • Stay protected with the Tesco Partner Guarantee – we’re here to support you when buying from an approved Tesco Partner.
Need help deciding? Take a look at our buying guide

Synopsis

This is an engaging and accessible explanation of Einstein's equation that explores the principles of physics through everyday life. Professor Brian Cox and Professor Jeff Forshaw go on a journey to the frontier of 21st century science to consider the real meaning behind the iconic sequence of symbols that make up Einstein's most famous equation. Breaking down the symbols themselves, they pose a series of questions: What is energy? What is mass? What has the speed of light got to do with energy and mass? In answering these questions, they take us to the site of one of the largest scientific experiments ever conducted. Lying beneath the city of Geneva, straddling the Franco-Swiss boarder, is a 27 km particle accelerator, known as the Large Hadron Collider. Using this gigantic machine - which can recreate conditions in the early Universe fractions of a second after the Big Bang - Cox and Forshaw will describe the current theory behind the origin of mass. Alongside questions of energy and mass, they will consider the third, and perhaps, most intriguing element of the equation: 'c' - or the speed of light. Why is it that the speed of light is the exchange rate? Answering this question is at the heart of the investigation as the authors demonstrate how, in order to truly understand why E=mc2, we first must understand why we must move forward in time and not backwards and how objects in our 3-dimensional world actually move in 4-dimensional space-time. In other words, how the very fabric of our world is constructed. A collaboration between two of the youngest professors in the UK, Why Does E=MC2? promises to be one of the most exciting and accessible explanations of the theory of relativity in recent years.

Author's Biography

Brian Cox is a professor of particle physics and Royal Society University Research Fellow at the University of Manchester. He divides his time between Manchester in the UK and the CERN laboratory in Geneva, where he heads an international project to upgrade the giant ATLAS and CMS detectors at the Large Hadron Collider. He has received many awards for his work promoting science, including being elected an International Fellow of the Explorers Club in 2002, an organisation whose members include Neil Armstrong and Chuck Yeager. He is also a popular presenter on TV and radio, with credits which including a six-part series on Einstein for BBC Radio 4, 3 BBC Horizon programs on Gravity. Time and Nuclear Fusion, and a BBC4 documentary about the LHC at CERN, The Big Bang Machine . He was the Science Advisor on Danny Boyle's movie, the science-fiction thriller Sunshine. Brian also has an unorthodox background in the music business, having toured the world with various bands and played keyboard with D:REAM, who had several UK Top 10 hits including Things Can Only Get Better (re-released & used as Tony Blair's election anthem back in 1997. Jeff Forshaw is professor of theoretical physics at the University of Manchester, specializing in the physics of elementary particles. He was awarded the Institute of Physics Maxwell Medal in 1999 for outstanding contributions to theoretical physics. He graduated from Oxford University and gained a PhD from Manchester University. From 1992-1995 he worked in Professor Frank Close's group at the Rutherford Appleton Laboratory before returning to Manchester in 1995. Jeff is an enthusiastic lecturer and currently teaches Einstein's Theory of Relativity to first year undergraduates. He has co-writing an undergraduate textbook on relativity for Wiley and he is the author of an advanced level monograph on particle physics for Cambridge University Press.

1 1